Showing posts from June, 2011

Complex interactions among epilepsy genes

A debate has been raging over the last few years over the nature of the genetic architecture of so-called “complex” disorders. These are disorders - such as schizophrenia, epilepsy, type II diabetes and many others - which are clearly heritable across the population, but which do not show simple patterns of inheritance. A new study looking at the profile of mutations in hundreds of genes in patients with epilepsy dramatically illustrates this complexity. The possible implications are far-reaching, especially for our ability to predict risk based on an individual’s genetic profile, but do these findings apply to all complex disorders?

Complex disorders are so named because, while it is clear that they are highly heritable (risk to an individual increases the more closely related they are to someone who has the disorder), their mode of inheritance is far more difficult to discern. Unlike classical Mendelian disorders (such as cystic fibrosis or Huntington’s disease), these disorders…

Synaesthesia and savantism

“We only use 10% of our brain”. I don’t know where that idea originated but it certainly took off as a popular meme – taxi drivers seem particularly taken with it. It’s rubbish of course – you use more than that just to see. But it captures an idea that we humans have untapped intellectual potential – that in each of us individually, or at least in humans in general lies the potential for genius.

Part of what has fed into that idea is the existence of so-called “savants” – people who have some isolated area of special intellectual ability far beyond most other individuals. Common examples of savant abilities include prodigious mental calculations, calendar calculations and remarkable feats of memory. These can arise due to brain injuries, or be apparently congenital. In congenital cases, savant abilities are often encountered against a background of the general intellectual, social or communicative symptoms of autism. (The portrayal by Dustin Hoffman in Rain Man is a good exa…

Where do morals come from?

Review of “Braintrust. What Neuroscience Tells Us about Morality”, by Patricia S. Churchland

The question of “where morals come from” has exercised philosophers, theologians and many others for millennia. It has lately, like many other questions previously addressed only through armchair rumination, become addressable empirically, through the combined approaches of modern neuroscience, genetics, psychology, anthropology and many other disciplines. From these approaches a naturalistic framework is emerging to explain the biological origins of moral behaviour. From this perspective, morality is neither objective nor transcendent – it is the pragmatic and culture-dependent expression of a set of neural systems that have evolved to allow our navigation of complex human social systems.

“Braintrust”, by Patricia S. Churchland, surveys the findings from a range of disciplines to illustrate this framework. The main thesis of the book is grounded in the approach of evolutionary psychology