Nav

Thursday, August 11, 2011

Split brains, autism and schizophrenia

A new study suggests that a gene known to be causally linked to schizophrenia and other psychiatric disorders is involved in the formation of connections between the two hemispheres of the brain. DISC1 is probably the most famous gene in psychiatric genetics, and rightly so. It was discovered in a large Scottish pedigree, where 18 members were affected by psychiatric disease.
The diagnoses ranged from schizophrenia and bipolar disorder to depression and a range of “minor” psychiatric conditions. It was found that the affected individuals had all inherited a genetic anomaly – a translocation of genetic material between two chromosomes. This basically involves sections of two chromosomes swapping with each other. In the process, each chromosome is broken, before being spliced back to part of the other chromosome. In this case, the breakpoint on chromosome 1 interrupted a gene, subsequently named Disrupted-in-Schizophrenia-1, or DISC1.

That this discovery was made using classical “cytogenetic” techniques (physically looking at the chromosomes down a microscope) and in a single family is somehow pleasing in an age where massive molecular population-based studies are in vogue. (A win for “small” science).

The discovery of the DISC1 translocation clearly showed that disruption of a single gene could lead to psychiatric disorders like schizophrenia. This was a challenge to the idea that these disorders were “polygenic” – caused by the inheritance in each individual of a large number of genetic variants. As more and more mutations in other genes are being found to cause these disorders, the DISC1 situation can no longer be dismissed as an exception – it is the norm.

It also was the first example of a principle that has since been observed for many other genes – namely that the effects of the mutation can manifest quite variably - not as one specific disorder, but as different ones in different people. Indeed, DISC1 has since been implicated in autism as well as adult-onset disorders. It is now clear from this and other evidence that these apparently distinct conditions are best thought of as variable outcomes that arise, in many cases at least, from disturbances of neurodevelopment.

Since the initial discovery, major research efforts of a growing number of labs have been focused on the next obvious questions: what does DISC1 do? And what happens when it is mutated? What happens in the brain that can explain why psychiatric symptoms result?

We now know that DISC1 has many different functions. It is a cytoplasmic protein - localised inside the cell - that interacts with a very large number of other proteins and takes part in diverse cellular functions, including cell migration, outgrowth of nerve fibres, the formation of dendritic spines (sites of synaptic contact between neurons), neuronal proliferation and regulation of biochemical pathways involved in synaptic plasticity. Many of the proteins that DISC1 interacts with have also been implicated in psychiatric disease.

This new study adds another possible function, and a dramatic and unexpected one at that. This function was discovered from an independent angle, by researchers studying how the two hemispheres of the brain get connected – or more specifically, why they sometimes fail to be connected. The cerebral hemispheres are normally connected by millions of axons which cross the midline of the brain in a structure called the corpus callosum (or “tough body” – (don’t ask)). Very infrequently, people are born without this structure – the callosal axons fail to cross the midline and the two hemispheres are left without this major route of communication (though there are other routes, such as the anterior commissure).

The frequency of agenesis of the corpus callosum has been estimated at between 1 in 1,000 and 1 in 6,000 live births – thankfully very rare. It is associated with a highly variable spectrum of other symptoms, including developmental delay, autistic symptoms, cognitive disabilities extending into the range of mental retardation, seizures and other neurological signs.

Elliott Sherr and colleagues were studying patients with this condition, which is very obvious on magnetic resonance imaging scans (see Figure). They initially found a mother and two children with callosal agenesis who all carried a deletion on chromosome 1, at position 1q42 – exactly where DISC1 is located. They subsequently identified another patient with a similar deletion, which allowed them to narrow down the region and identify DISC1 as a plausible candidate (among some other genes in the deleted region). Because the functions of proteins can be affected not just by large deletions or translocations but also by less obvious mutations that change a single base of DNA, they also sequenced the DISC1 gene in a cohort of callosal agenesis patients and found a number carrying novel mutations that are very likely to disrupt the function of the gene.

While not rock-solid evidence that it is DISC1 that is responsible, these data certainly point to it as the strongest candidate to explain the callosal defect. This hypothesis is strongly supported by findings from DISC1 mutant mice (carrying a mutation that mimics the effect of the human translocation), which also show defects in formation of the corpus callosum. In addition, the protein is strongly expressed in the axons that make up this structure at the time of its development.

The most obvious test of whether disruption of DISC1 really causes callosal agenesis is to look in the people carrying the initial translocation. Remarkably, it is not known whether the original patients in the Scottish pedigree who carry the DISC1 translocation show this same obvious brain structural phenotype. They have, very surprisingly, never been scanned.

This new paper raises the obvious hypothesis that the failure to connect the two hemispheres results in the psychiatric or cognitive symptoms, which variously include reduced intellectual ability, autism and schizophrenia. This seems like too simplistic an interpretation, however. All we have now is a correlation. First, the implication of DISC1 in the acallosal phenotype is not yet definitive – this must be nailed down and replicated. But even if it is shown that disruption of DISC1 causes both callosal agenesis and schizophrenia (or other psychiatric disorders or symptoms), this does not prove a causal link. DISC1 has many other functions and is expressed in many different brain areas (ubiquitously in fact). Any, or indeed, all of these functions may in fact be the cause of psychopathology.

One prediction, if it were true that the lack of connections between the two hemispheres is causal, is that we would expect the majority of patients with callosal agenesis to have these kinds of psychiatric symptoms. In fact, the rates are indeed very high – in different studies it has been estimated that up to 40% of callosal agenesis patients have an autism diagnosis, while about 8% have the symptoms of schizophrenia or bipolar disorder. (Of course, these patients may have other, less obvious brain defects as well, so even this is not definitive).

Conversely, we might naively expect a high rate of callosal agenesis in patients with autism or schizophrenia. However, we know these disorders are extremely heterogeneous and so it is much more likely that this phenotype might be apparent in only a specific (possibly very small) subset of patients. This may indeed be the case – callosal agenesis has been observed in about 3 out of 200 schizophrenia patients (a vastly higher rate than in the general population). Another study, just published, has found that mutations in a different gene – ARID1B – are also associated with callosal agenesis, mental retardation and autism. More generally, there may be subtle reductions in callosal connectivity in many schizophrenia or autism patients (including some autistic savants).

Whether this defect can explain particular symptoms is not yet clear. For the moment, the new study provides yet another possible function of DISC1, and highlights an anatomical phenotype that is apparently present in a subset of autism and schizophrenia cases and that can arise due to mutation in many different genes (of which DISC1 and ARID1B are only two of many known examples).


One final note: formation of the corpus callosum is a dramatic example of a process that is susceptible to developmental variation. What I mean is this: when patients inherit a mutation that results in callosal agenesis, this phenotype occurs in some patients but not all. This is true even in genetically identical people, like monozygotic twins or triplets (or in lines of genetically identical mice). Though the corpus callosum contains millions of nerve fibres, the initial events that establish it involve very small numbers of cells. These cells, which are located at the medial edge of each cerebral hemisphere, must contact each other to enable the fusion of the two hemispheres, forming a tiny bridge through which the first callosal fibres can cross. Once these are across, the rest seem able to follow easily. Because this event involves very few cells at a specific time in development, it is susceptible to random “noise” – fluctuations in the precise amounts of various proteins in the cells, for example. These are not caused by external forces – the noise is inherent in the system. The result is that, in some people carrying such a mutation the corpus callosum will not form at all, while in others it forms apparently completely normally (see figure of triplets, one on left with normal corpus callosum, the other two with it absent). So, an all-or-none effect can arise, without any external factors involved.

This same kind of intrinsic developmental variation may also explain or at least contribute to the variability in phenotypic outcome at the level of psychiatric symptoms when these kinds of neurodevelopmental mutations are inherited. Even monozygotic twins are often discordant for psychiatric diagnoses (concordance for schizophrenia is about 50%, for example). This is often assumed to be due to non-genetic and therefore “environmental” or experiential factors. If these disorders really arise from differences in brain wiring, which we know are susceptible to developmental variation, then differences in the eventual phenotype could actually be completely intrinsic and innate.


Osbun N, Li J, O'Driscoll MC, Strominger Z, Wakahiro M, Rider E, Bukshpun P, Boland E, Spurrell CH, Schackwitz W, Pennacchio LA, Dobyns WB, Black GC, & Sherr EH (2011). Genetic and functional analyses identify DISC1 as a novel callosal agenesis candidate gene. American journal of medical genetics. Part A, 155 (8), 1865-76 PMID: 21739582

Halgren C, Kjaergaard S, Bak M, Hansen C, El-Schich Z, Anderson CM, Henriksen KF, Hjalgrim H, Kirchhoff M, Bijlsma EK, Nielsen M, den Hollander NS, Ruivenkamp CA, Isidor B, Le Caignec C, Zannolli R, Mucciolo M, Renieri A, Mari F, Anderlid BM, Andrieux J, Dieux A, Tommerup N, & Bache I (2011). Corpus Callosum Abnormalities, Mental Retardation, Speech Impairment, and Autism in Patients with Haploinsufficiency of ARID1B. Clinical genetics PMID: 21801163

Wednesday, August 3, 2011

Welcome to your genome

There is a common view that the human genome has two different parts – a “constant” part and a “variable” part. According to this view, the bases of DNA in the constant part are the same across all individuals. They are said to be “fixed” in the population. They are what make us all human – they differentiate us from other species. The variable part, in contrast, is made of positions in the DNA sequence that are “polymorphic” – they come in two or more different versions. Some people carry one base at that position and others carry another. The idea is that it is the particular set of such variations that we inherit that makes us each unique (unless we have an identical twin). According to this idea, we each have a hand dealt from the same deck.

The genome sequence (a simple linear code made up of 3 billion bases of DNA in precise order, chopped up onto different chromosomes) is peppered with these polymorphic positions – about 1 in every 1,250 bases. That makes about 2,400,000 polymorphisms in each genome (and we each carry two copies of the genome). That certainly seems like plenty of raw material, with limitless combinations that could explain the richness of human diversity. This interpretation has fuelled massive scientific projects to try and find which common polymorphisms affect which traits. (Not to mention personal genomics companies who will try to tell you your risk of various diseases based on your profile of such polymorphisms).

The problem with this view is that it is wrong. Or at least woefully incomplete.

The reason is it ignores another source of variation: very rare mutations in those bases that are constant across the vast majority of individuals. There is now very good evidence that it is those kinds of mutations that contribute most to our individuality. Certainly, they are much more likely to affect a protein’s function and much more likely to contribute to genetic disease. We each carry hundreds of such rare mutations that can affect protein function or expression and are much more likely to have a phenotypic impact than common polymorphisms.

Indeed, far from most of the genome being effectively constant, it can be estimated that every position in the genome has been mutated many, many times over in the human population. And each of us carries hundreds of new mutations that arose during generation of the sperm and egg cells that fused to form us. New mutations may spread in the pedigree or population in which they arise for some time, depending in part on whether they have a deleterious effect or not. Ones that do will likely be quickly selected against.

A new paper from the 1000 genomes project consortium shows that:

“the vast majority of human variable sites are rare and that the majority of rare variants exhibit, at most, very little sharing among continental populations”.

This is a much more fluid picture of genetic variation than we are used to. We are not all dealt a genetic hand from the same deck – each population, sub-population, kindred, nuclear family has a distinct set of rare genetic variants. And each of these decks contains a lot of jokers – the new mutations that arise each time a hand is dealt.

Why have such rare mutations generally been ignored while the polymorphic sites have been the focus of intense research? There are several reasons, some practical and some theoretical. Practically, it has until recently been almost impossible to systematically find very rare mutations. To do so requires that we sequence the whole genome, which has only recently become feasible. In contrast, methods to survey which bases you carry at all the polymorphic sites across the genome were developed quite some time ago now and are relatively cheap to use. (They rely on sampling about 500,000 such sites around the genome – because of unevenness in the way different bits of chromosomes get swapped when sperm and eggs are made, this sample actually tells you about most of the variable sites across the whole genome). So, there has been a tendency to argue that polymorphic sites will be major contributors to human phenotypes (especially diseases) because those have been the only ones we have been able to look at.

Unfortunately, the results of genome-wide association studies, which aim to identify common variants associated with traits or diseases, have been disappointing. This is especially true for disorders with large effects on fitness, such as schizophrenia or autism. Some variants have been found but their effects, even in combination are very small. Most of the heritability of most of the traits or diseases examined to date remains unexplained. (There are some important exceptions, especially for diseases that strike only late in life and for things like drug responses, where selective pressures to weed out deleterious alleles are not at play).

In contrast, many more rare mutations causing disease are being discovered all the time, and the pace of such discoveries is likely to increase with technological advances. The main message that emerges from these studies has been called by Mary-Claire King the “Anna Karenina principle”, based on Tolstoy’s famous opening line:

“Happy families are all alike; every unhappy family is unhappy in its own way”

But can such rare variants really explain the “missing heritability” of these disorders? Some people have argued that they cannot, but this seems to me to be based on a pervasive misconception of how the heritability of a trait is measured and what it means. According to this misconception, if a trait is heritable across the population, that heritability cannot be accounted for by rare variants. After all, if a mutation only occurs in one or a few individuals, it could only minimally (nearly negligibly) contribute to heritability across the whole population. That is true. However, heritability is not measured across the population – it is measured in families and then averaged across the population.

In humans, it is usually derived by comparing phenotypes between people of different genetic relatedness (identical versus fraternal twins, siblings, parents, cousins, etc.). The values of these comparisons are then averaged across large numbers of pairs to allow estimates of how much genetic variance affects phenotypic variance – the population heritability. While a specific rare mutation may only affect the phenotype within a single family, such mutations could, collectively, explain all of the heritability. Completely different sets of mutations could be affecting the trait or causing the disease in different families.

The next few years will reveal the true impact of rare mutations. We should certainly expect complex genetic interactions and some real effects of common polymorphisms. But the idea that our traits are determined simply by the combination of variants we inherit from a static pool in the population is no longer tenable. We are each far more unique than that.

(And if your personal genomics company isn’t offering to sequence your whole genome, it’s not personal enough).


Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, Yu F, Gibbs RA, The 1000 Genomes Project, & Bustamante CD (2011). Demographic history and rare allele sharing among human populations. Proceedings of the National Academy of Sciences of the United States of America, 108 (29), 11983-11988 PMID: 21730125

Walsh CA, & Engle EC (2010). Allelic diversity in human developmental neurogenetics: insights into biology and disease. Neuron, 68 (2), 245-53 PMID: 20955932

McClellan, J., & King, M. (2010). Genetic Heterogeneity in Human Disease Cell, 141 (2), 210-217 DOI: 10.1016/j.cell.2010.03.032
s;o