Are human brains especially fragile?
As many as a quarter of people will experience mental
illness at some point in their life (over a third in any given year with more
expansive definitions). At least 5% of the population suffer from lifelong
brain-based disorders, including intellectual disability, autism spectrum
disorders, schizophrenia, epilepsy and many others. Many of these conditions dramatically
increase mortality rates and reduce fecundity (number of offspring), impacting
heavily on evolutionary fitness.
Faced with these numbers, we have to ask the question: are
human brains especially fragile? Are we different from other species in this
regard? Is the brain different from other organs? As all of the disorders
listed above are highly heritable, these questions can be framed from a genetic
perspective: is there something about the genetic program of human brain
development that makes it especially sensitive to the effects of
mutations?
I have written lately about the robustness of neural development
– how, despite being buffeted by environmental insults, intrinsic noise on a
molecular level and a load of genetic mutations that we all carry, most of the
time the outcome is within a species-typical range. In particular, the molecular
programs of neural development are inherently robust to the challenge of mutations
with very small effect on protein levels or function, even the cumulative
effects of many such mutations (at least, that is what I have argued). The
flipside is that development could be vulnerable to mutations in a set of specific
genes (especially ones encoding proteins with many molecular interactions) when
the mutations have a large effect at the protein level.
That fits generally with what we know about robustness in complex systems, especially so-called small-world networks, which are resistant
to error of most components but vulnerable to attack on highly interconnected
nodes. But here’s the rub: the number of such genes seems too high. Geneticists
are finding that mutations in any of a very large number of genes (many
hundreds) could underlie conditions such as autism and intellectual disability.
In addition, many of these mutations arise de novo in the germline of
unaffected parents (who are not carriers of the responsible mutation) and thus
have dominant effects – mutation of just one copy of a gene or chromosomal
locus is sufficient to cause a disorder. This is not what is predicted,
necessarily, from consideration of robustness of complex systems and the way it
evolves. Why are so many different genes sensitive to dosage (the number of
copies of the gene) in neural development?
The first thing to assess is whether this situation is
actually unusual. It seems like it is, but maybe heart development or eye
development are just as sensitive. (Certainly there are lots of genetic
conditions affecting these systems too, though I don’t know of any studies
comparing the genetic architecture of defects across systems). Those are organs
where defects are often picked up, but you could imagine subtle defects in
other systems which would go unnoticed. Maybe we just have a huge ascertainment
bias in picking up mutations that affect the nervous system. After all, we are
a highly social species and finely adapted to analyse each other’s behaviour. I
might not know if your liver is functioning completely normally but might
readily be able to detect quite subtle differences in your sociability or
threat sensitivity or reality testing or any other of the myriad cognitive
faculties affecting human behaviour.
As for whether this situation is unique to humans, it is
very hard to tell. Having analysed dozens of lines of mutant mice for nervous
system defects, I can tell you it is not that easy to detect subtle differences
in anatomy or function. Many mutants that one might expect to show a strong
effect (based on the biochemical function and expression pattern of the encoded
protein) seem annoyingly normal. However, in many cases, more subtle probing of
nervous system function with sophisticated behavioural tasks or
electrophysiological measures does reveal a phenotypic difference, so perhaps
we are simply not well attuned to the niceties of rodent behaviour.
That kind of ascertainment bias seems to me like it could be
an important part of the explanation for this puzzle – it’s not that human
brains are more sensitive, it’s that we are better at detecting subtle
differences in outcome for human brains than for other systems or other animals.
That’s just an intuition, however.
So, just to follow a line of thought, let’s assume it is
true that human brain development and/or function is actually more sensitive to
mutations (including loss of just one copy of any of a large number of genes) than
development or function of other systems. How could such a situation arise?
Well, most obviously, it could simply be that more genes are
involved in building a brain than in building a heart or a liver. This is
certainly true. At least 85% of all genes are expressed in the brain, far
higher than any other organ, and many are expressed during embryonic and fetal
brain development in highly dynamic and complex ways not captured by some
genomic technologies (such as microarrays). So, maybe there are just more bits
to break. The counter-argument is that natural systems with more components tend
to be more robust to loss of any one component as more redundancy and
flexibility gets built into the system. Robustness may come for free with
increasing complexity.
To really understand this, we have to approach it from an evolutionary
angle, though – how did this system evolve? Wouldn’t there have been selective
pressure against this kind of genetic vulnerability? Well, possibly, though
robustness may more typically evolve due to pressure to buffer environmental
variation and/or intrinsic noise in the system – robustness to mutations may be
a beneficial side-effect as opposed to the thing that was directly selected
for. (After all, natural selection lacks foresight – it can only act on the
current generation, with no knowledge of the future usefulness of new
variations).
Still, imagine a mutation arises that increases
vulnerability to subsequent mutations. Given a high enough rate of such new
mutations, the original mutation may well eventually be selected against; i.e.,
it would not rise to a high frequency in the population. Unless, that is, it
conferred a benefit that was greater than the burden of increased
vulnerability. That may in fact be exactly what happened. Perhaps the mutations
(likely many) that gave rise to our larger and more complex brains gave such an
immediate and powerful evolutionary advantage that positive selection rapidly
fixed them in the population, potential vulnerability be damned.
This would be like upgrading your electronic devices to a new
operating system, even though you know there are bugs and will be occasional
crashes – it’s usually so much more powerful that it’s worth it. The selective
pressures of the cognitive niche, which early humans started to carve out for
themselves, may have pushed ever harder for increasing brain complexity,
despite the consequences.
Increased size and complexity may also be intimately tied to
another feature of human brain development – early birth and prolonged
maturation. Early birth, while the brain is more immature than that of other
species, was probably necessitated by the growth of the brain and the size
limits of the birth canal. One effect of this is that the human brain is more
exposed to experience during periods of early plasticity, providing the
opportunity to refine neural circuitry through learning. Indeed, human brain
maturation continues for decades, with the evolutionarily newest additions,
such as prefrontal cortex, maturing latest.
This brings obvious advantages, especially providing greater
opportunities for an amplifying interplay between genetic and cultural
evolution. But it has a downside, in that the brain is vulnerable during these
periods to insults, such as extreme neglect, stress or abuse. Perhaps selection
for early birth and prolonged maturation also made the human brain more
sensitive to the effects of genetic mutations, some of which may only become
apparent as maturation proceeds.
For now, it is hard to tell whether human brains are really
especially fragile or whether we are just very good at detecting subtle
differences. If they are fragile, one can certainly imagine this as a tolerated
cost of the vastly increased complexity and prolonged development of the human brain.
Kevin, fascinating! This picture exhibits my individual point of view on the unique evolution of the human brain (especially, hominin brain expansion and the vulnerability of human brain development) and is made with the clear intention to be a work of CEREBRART.
ReplyDeletehttp://cerebrart.blogspot.de/
Thanks for this great post.
ReplyDeleteIn my upcoming popular science book about consciousness, THE RAVENOUS BRAIN (coming out in a couple of weeks), I make basically the same point in the final chapters, that the price we pay for such a powerful large brain, which is fantastic at finding innovations to help us survive, is that, like any exceptionally complex machine, it is more liable to malfunction. This is both true neurologically (where we are particularly susceptible to concussion, for instance) and psychiatrically. You can see a bit more about the book here http://www.danielbor.com/the-ravenous-brain/
(or on Amazon).
This comment has been removed by the author.
DeleteCould the reverse not be argued - that the brain is especially resilient - i.e. genetic mutations affecting other bodily systems affect the viability of the organism and so have terminal effects
ReplyDeleteThis is an interesting possibility - that the ascertainment bias goes the opposite way - that we see more mutations affecting brain development because they are tolerated better.
DeleteI think I agree with Prof Laws...
ReplyDeleteMaybe our genetic fitness to breed is contained in the genes that affect our physical integrity, rather than in our brain genes. This may be due to:
a)having many genes for brain development mean their influence must overlap & protect mean brain integrity;
b)the fact that we give birth to quite immature young/brains, which allows for early compensatory plasticity to overcome any genetic problems before maturity
c)we have some backup for many systems by having 2 hemispheres,
d) the fact that most brain-directed mutations are de novo & not passed on.
This also means that we should not "worry" as a species about reproduction by individuals whose brains seem "unfit" for their own survival, since their offspring's genes will be OK. However, it's a bit difficult to decide who looks after the "fit" offspring of those enthusiastically copulating behind the couch at facilities for the severely intellectually impaired!
Wow!!What nice info on this post! All information really useful.I love your stuff very much.Thanks for sharing this helpful post.
ReplyDeletebuy twitter followers
Gah! Lost my first post thanks to google accounts.
ReplyDeleteAnyhew; First of all I think ascertainment bias does have a role here.
Secondly, you say that network robustness theory is kind of at odds with the observation that so many single gene mutations have pronounced effects. I don't really think there is a paradox here; I think we have to have a closer look at the networks.
We could look at a single, huge network of components involved in neurodevelopment, and pretend that this would tell us how robust the system is, but, of-course, that network doesn't exist in real terms. As you said above, the components of a network are constantly in flux, as are the connections between them, as you move from cell A to cell B, from time X to time Y. So if we look at, say, a developmental process in a specific place, there will be times and places where the network is relatively large/robust/redundant etc.. punctuated by periods where the network is less robust. Shuffling, expansion, contraction etc.. Context will determine when a gene/protein/element occupies a peripheral, and bufferable position in the network or a more vulnerable, possibly central position, in a smaller and less well laced network. I think what I'm trying to say is we can take network robustness to be something that exists, but we must carefully consider the shape of the real networks. Our view of network architecture and robustness, maps to the more exhaustive work on very old single celled organisms.
It's pretty difficult to conceptualise the actual process of evolving network robustness (in humans). Like you said, it's likely to be something that comes packaged with complexity. That said its also difficult to imagine how real time network complexity and massiveness can be maintained along with organismal/developmental complexity (I'm having difficulty thinking of a way to articulate what I really mean here). Lets talk about human brain evolution, and specifically look at the genes that have had a selective push to contribute to adaptive complexity/size/function etc in specific parts of the modern human brain. The networks around those genes, I would think, are going to be small and diffuse (those networks that exist in the context of their novel function). Consolidation and "repopulation" of those networks in such a way as to maintain the initial adaptive function seems like a very tall order for selection operating on a tens of thousands of years time-scale, especially given our drifty history. So I think that the drive for developmental complexity in the brain has left a 4D network that is also more complex, but one which is more leafy and less webby at it's extremes. I think that that is likely to be a defining feature of complex organisms that have undergone fast evolution in complex organs.
I definitely agree that it is definitely fragile. So many people deal with mental issues. It seems like it is more and more. So much research has to be done here. click here
ReplyDelete